Chebyshev Approximation with Restricted Ranges by Families with the Betweenness Property

CHARLES B. DUNHAM

Computer Science Department, University of Western Ontario, London, Canada Communicated by E. W. Cheney

Let u < v be two given functions. The Chebyshev approximation problem in which all approximants G must satisfy the constraint $u \leq G \leq v$ is considered. It is assumed that the family \mathscr{G} of (unconstrained) approximants has the betweenness property, satisfied by linear and admissible rational families. A necessary and a sufficient condition for an approximant to be best are obtained. A set on which best approximants agree is obtained. A uniqueness result is given.

Let X be a compact topological space and C(X) the space of real continuous functions on X. For $g \in C(X)$, define

$$||g|| = \sup\{|g(x)|: x \in X\}.$$

Let u, v be continuous functions from X into the extended real line R with u < v. Let \mathscr{G} be a subset of C(X) with elements F, G, H,.... Let f be a given element of C(X) and define E(G, x) = f(x) - G(x). The Chebyshev problem with restricted ranges is to choose G^* of \mathscr{G} to minimize $e(G) = || E(G, \cdot) ||$ subject to the constraint

$$u \leqslant G \leqslant v. \tag{1}$$

Such an element G^* is called a best approximation in \mathscr{G} to f. It will be assumed throughout the discussion that f is fixed, and mention of f is suppressed in the notations e(G) and $E(G, \cdot)$.

We will consider the case in which \mathscr{G} has the betweenness property, which was introduced in [1].

DEFINITION. A subset \mathscr{G} of C(X) has the *betweenness property* if for any two elements G_0 and G_1 , there exists a λ -set $\{H_{\lambda}\}$ of elements of \mathscr{G} such that $H_0 = G_0$, $H_1 = G_1$, and for all $x \in X$, $H_{\lambda}(x)$ is either a strictly monotonic function of λ or a constant, $0 \leq \lambda \leq 1$.

Families of functions with the betweenness property include linear families,

254

admissible rational families, and suitable transformations of such families [1, p. 152].

For generality in characterization we will assume that u is lower semicontinuous and v is upper semicontinuous into the extended real line R (for definitions see [3, p. 74–77]).

Let \mathscr{G}' be the set of elements of \mathscr{G} which satisfy the constraint (1). It is obvious from the definition that \mathscr{G}' has the betweenness property if \mathscr{G} does.

LEMMA 1. Let \mathscr{G} have the betweenness property. Let u be lower semicontinuous and v be upper semicontinuous into the extended real line. Let G_0 be in \mathscr{G}' . Let $G_1 \in \mathscr{G}$ and

$$G_1(x) > u(x)$$
 $G_0(x) = u(x)$
 $G_1(x) < v(x)$ $G_0(x) = v(x).$

For all λ -sufficiently small, elements of a λ -set for G_0 , G_1 are in \mathscr{G}' .

Proof. Let $\{H_{\lambda}\}$ be a λ -set. Suppose the theorem is false. Then there is a sequence $\{\lambda(k)\} \rightarrow 0$ and $\{x_k\}$ such that either

$$H_{\lambda(k)}(x_k) < u(x_k) \tag{2}$$

or

$$H_{\lambda(k)}(x_k) > v(x_k). \tag{3}$$

By taking a subsequence, if necessary, we can ensure that one of (2, 3) always occurs and $\{x_k\}$ has a limit x. Suppose (2) always occurs. We have two possibilities. First we could have $G_0(x) = u(x)$. In this case $G_1(x) > G_0(x)$ and so there is a neighborhood N of x such that

$$G_1(y) > G_0(y) \ge u(y)$$
 for $y \in N$.

This implies that $H_{\lambda}(y) \ge u(y)$ for all $\lambda \in [0, 1]$ and all $y \in N$. This contradicts (2). The second possibility is that $G_0 > u(x)$. There exists $\epsilon > 0$ such that $G_0(x) - u(x) > \epsilon$. By upper semicontinuity of G - u there is a neighborhood N of x such that $G_0(y) - u(y) > \epsilon$ for $y \in N$. As $\{H_{1/k}\}$ converges uniformly to G_0 [1, bottom p. 151], we have $H_{\lambda}(y) > u(y)$ for $y \in N$ and all λ sufficiently small. This contradicts (2). The case when (3) always occurs is handled by similar arguments.

CHARACTERIZATION OF BEST APPROXIMATION

The set of points at which $E(G, \cdot)$ attains its norm e(G) will be denoted by M(G). By compactness of X and continuity of $|E(G, \cdot)|$, M(G) is nonempty and closed. THEOREM 1. A sufficient condition for $G \in \mathscr{G}'$ to be a best approximation is that there exist no element $F \in \mathscr{G}$ such that

$$[f(x) - G(x)][F(x) - G(x)] > 0 \qquad x \in M(G)$$

$$F(x) \ge G(x) \qquad G(x) = u(x) \qquad (4)$$

$$F(x) \le G(x) \qquad G(x) = v(x).$$

The theorem is obvious.

THEOREM 2. Let \mathscr{G} have the betweenness property. Let u be lower semicontinuous and v be upper semicontinuous into the extended real line. A necessary condition for $G \in \mathscr{G}'$ to be a best approximation is that there exist no element $F \in \mathscr{G}$ such that

$$[f(x) - G(x)][F(x) - G(x)] > 0 \qquad x \in M(G)$$

$$F(x) > G(x) \qquad G(x) = u(x) \qquad (5)$$

$$F(x) < G(x) \qquad G(x) = v(x).$$

Proof. By Lemma 1, if (5) holds there is in the λ -set for (G, F) an element H_{λ} such that

$$[f(x) - G(x)][H_{\lambda}(x) - G(x)] > 0 \qquad x \in M(G)$$

and by corollary to Theorem 1 of [1, p. 153], G cannot be best in \mathscr{G}' , which has the betweenness property.

The following example shows that the sufficient condition is not necessary.

EXAMPLE. Let X = [-1, 1] and \mathscr{G} be the family of functions of the form αx , α real. Let $u(x) = -x^2$ and $v = +\infty$. Let f(x) = 1 + x. The only approximant which is $\ge u$ is the zero approximant, which is therefore best. Now $M(0) = \{1\}$ and setting F(x) = x, G(x) = 0, we have (4) holding. It should be noted that in the case \mathscr{G} is an alternating family on an interval, there is a necessary and sufficient condition for an approximation to be best [2].

A SET ON WHICH BEST APPROXIMATIONS AGREE

From now on we will again assume that u, v are continuous into R. Define

$$\hat{M}(G) = M(G) \lor \{x: G(x) = u(x)\} \lor \{x: G(x) = v(x)\}$$

Continuity ensures that $\hat{M}(G)$ is closed.

Let \mathscr{G}^* be the set of best approximations to f and $N = \bigcap \hat{M}(G)$, $G \in \mathscr{G}^*$. We will show in this section that if \mathscr{G}^* is nonempty then N is nonempty, best approximations must agree on N, but N may not be an error-determining set.

LEMMA 2. Let \mathscr{G} have the betweenness property and \mathscr{G}^* be nonempty. Given a finite number $G_1, ..., G_n$ of elements of \mathscr{G}^* there exists an element G_0 of \mathscr{G}^* such that $\bigcap_{k=1}^n \hat{M}(G_k) \supset \hat{M}(G_0)$.

COROLLARY. Let G_0 , $G_1 \in \mathscr{G}^*$, then the λ -set $\{H_{\lambda}\}$ for G_0 and G_1 is contained in \mathscr{G}^* .

The proof of these is similar to the proof of the corresponding results in [1, p. 153].

LEMMA 3. Let \mathcal{G} have the betweenness property. If \mathcal{G}^* is nonempty, N is nonempty.

The proof is identical to the proof of the corresponding result in [1, p. 154].

LEMMA 4. Let \mathscr{G} have the betweenness property. Let G_0 , $G_1 \in \mathscr{G}^*$, then $G_0(x) = G_1(x)$ for all $x \in N$.

Proof. Let G_0 , $G_1 \in \mathscr{G}^*$ be given and select a λ -set $\{H_{\lambda}\}$ corresponding to G_0 and G_1 , $0 < \lambda < 1$. If $G_0(x) \neq G_1(x)$ then

$$|E(H_{\lambda}, x)| < \max |E(G_0, x), E(G_1, x)| \qquad 0 < \lambda < 1$$

and $H_{\lambda}(x)$ is in (u(x), v(x)). Since $\{H_{\lambda}\} \subset \mathscr{G}^*, x \notin N$.

One conjecture corresponding to Lemma 6 of [1, p. 154] is

CONJECTURE. Let \mathscr{G} have the betweenness property. If \mathscr{G}^* is nonempty there exists no approximant G such that

$$|E(G, x)| < \rho(f) = \inf\{e(G): G \in \mathscr{G}\} \qquad x \in N$$
$$u(x) \leqslant G(x) \leqslant v(x) \qquad x \in N.$$

The Conjecture is *false*, for in the example given after Theorem 2, $N = \{0, 1\}$, and if we set G(x) = x,

$$|E(G, x)| < 2 = \rho(f) \qquad x \in N$$
$$u(x) \leq G(x) \qquad x \in N.$$

It follows that N is not an error determining set.

The result corresponding to Lemma 6 of [1, p. 154] is actually

LEMMA 5. Let \mathscr{G} have the betweenness property. If \mathscr{G}^* is nonempty there exists no approximant $G \in \mathscr{G}$ such that

$$|E(G, x)| < \inf\{e(G): G \in \mathscr{G}\} \qquad u(x) < G(x) < v(x) \qquad x \in N$$
 (6)

To prove the Lemma we use the arguments of the proof of Lemma 6 of [1, p. 154] supplemented by Lemma 1.

UNIQUENESS

DEFINITION. \mathscr{G} has the sign changing property of degree *n* at *G* if for any *n* distinct points $\{x_1, ..., x_n\}$ and *n* real numbers $w_1, ..., w_n$ which are either +1 or -1, there exists an approximant *F* such that

$$sgn(F(x_k) - G(x_k)) = w_k$$
 $k = 1,..., n$.

We need not specify the closeness of F to G in the above definition since if such an F exists, there exists with the betweenness property such an Farbitrarily close to G.

DEFINITION. \mathscr{G} has property Z of degree n at G if G - F having n zeros implies F = G.

Let \mathscr{G} have the betweenness property. The F in the definition of the sign changing property can be chosen such that for given $\epsilon > 0$, $||F - G|| < \epsilon$. Let $G^* \in \mathscr{G}^*$. If \mathscr{G} has the sign changing property of degree n at G^* then G^* either coincides with the function f being approximated or N has at least n + 1 points, for it had less we could find F such that (6) holds, which contradicts Lemma 5. If \mathscr{G} has property Z of degree n at G^* then by Lemma 4 best approximations must be identical if N has n or greater points. We therefore have:

THEOREM 3. Let \mathscr{G} have the betweenness property and let $G^* \in \mathscr{G}^*$. If \mathscr{G} has property Z of degree n + 1 at G^* and the sign changing property of degree n at G^* , then G^* is a unique best approximation.

REFERENCES

1. C. B. DUNHAM, Chebyshev approximation by families with the betweenness property, *Trans. Amer. Math. Soc.* 136 (1969), 151-157.

258

- 2. C. B. DUNHAM, Alternating minimax approximation with unequal restraints, J. Approx. Theor. 10 (1974), 199–205.
- 3. E. McShane and T. Botts, "Real Analysis," Van Nostrand, Princeton, N. J., 1959.
- 4. J. E. TORNGA, Approximation From Varisolvent and Unisolvent Families Whose Members Have Restricted Ranges, Dissertation, Michigan State University, 1971.
- 5. H. L. LOEB, D. G. MOURSUND, AND G. D. TAYLOR, Uniform rational weighted approximations having restricted ranges, J. Approx. Theor. 1 (1968), 401-411.